यदि $f(\theta)=\left|\begin{array}{ccc}1 & \cos \theta & 1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1\end{array}\right|$ है, तथा $A$ तथा $B$ क्रमशः $f(\theta)$ के अधिकतम तथा न्यूनतम मान हैं, तो $( A , B )$ बराबर है
$(3, - 1)$
$( 4,2-\sqrt 2 )$
$(2 + \sqrt 2 ,2 - \sqrt 2 )$
$(2 + \sqrt 2 , - 1)$
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $
यदि शीर्ष $(2,-6),(5,4)$ और $(k, 4)$ वाले त्रिभुज का क्षेत्रफल $35$ वर्ग इकाई हो तो $k$ का मान है:
यदि $A, B, C$ किसी त्रिभुज के कोण हों, तो $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $
सारणिकों का प्रयोग करके $(3,1)$ और $(9,3)$ को मिलाने वाली रेखा का समीकरण ज्ञात कीजिए।
माना $A =\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ है। यदि $A ^2+\gamma A +18 I =$ $O$ है, तो $\operatorname{det}( A )$ बराबर है